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Abstract. This demo presents a conversational pipeline for crafting
complex neuro-symbolic models through natural language prompts.
It leverages large language models to generate declarative programs
in the DomiKnowS framework. The programs in this framework ex-
press concepts and their relationships as a graph in addition to logical
constraints between them. The graph will be connected to underly-
ing neural models. Our proposed pipeline utilizes techniques like dy-
namic in-context demonstration retrieval, model refinement based on
feedback from a symbolic parser, visualization, and user interaction
to generate the tasks’ structure and formal knowledge representation.
This approach empowers domain experts, even those not well-versed
in ML/AI to design customized neural models that can incorporate
their respective domain knowledge.

1 Introduction

With the rise of large language models (LLM), the community is
getting closer to the dream of natural language programming inter-
faces [22, 27]. Nonetheless, developing systems capable of seam-
lessly and accurately interpreting and executing complex program-
ming tasks using natural language remains a challenging goal. Con-
versely, declarative programming has endeavored to maintain pro-
grams at the problem domain level [18]. Within this programming
paradigm, emphasis on the logic of what needs to be accomplished,
as opposed to the intricacies of implementation, reduces the gap
between natural and declarative languages. Inspired by this idea,
our research envisions a natural language interface for a declara-
tive learning-based programming framework [26, 15]. Within the
interface, developers articulate their learning tasks using natural lan-
guage, where the underlying system translates them into code in the
declarative language of DomiKnowS' [7]. DomiKnowsS further es-
tablishes connections between symbolic knowledge and neural learn-
ing components, facilitating the integration of domain knowledge
into deep learning models.

The need for developing customized learning-based models is
driven by two main arguments: 1) Despite their impressive perfor-
mance across various tasks [37], Large Language Models (LLMS)
still trail behind smaller, domain-specific models [32, 31, 14], and
2) incorporating domain knowledge into learning models can im-
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prove their performance or ensure output consistency with the do-
main knowledge [23, 25, 34].

To develop our method, we leverage the progress on specialized
frameworks for knowledge integration [7, 1, 19, 12], particularly
those with declarative interfaces [16] and the advancements in tailor-
ing neural model architectures using LLMs [31]. Our method offers
two advantages over prior research on tailoring deep learning models
from natural language prompts. Firstly, we progress towards develop-
ing complex architectures, in contrast to previous research focusing
on simply fine-tuning text-to-text models for specific tasks [31]. Sec-
ondly, our approach aids in fine-tuning complex architectures, which
distinguishes it from prior work primarily centered on the composi-
tion of pre-trained models during inference [29].

Adapting LLMs to generate customized neural architectures based
on the DomiKnowS framework presents several challenges. These
include limited resources for fine-tuning, the requirement to adjust
LLMs to an unfamiliar output format, the complexity of translating
domain knowledge into FOL statements [10], let alone the specific
DomiKnowS’ Python-based First-Order Logic (FOL) language, and
the potential lack of user familiarity with the DomiKnowS language,
hindering meaningful feedback in a human-in-the-loop process. To
tackle these issues, we propose an interactive pipeline where we uti-
lize underlying LLMs with techniques such as prompt templates for
user interactions, dynamic few-shot in-context learning, intermediary
mapping of natural language (NL) to FOL statements, and iterative
refinement based on feedback from symbolic semantic/syntactic ver-
ification functions. The demo? and the video® can be found online.

2 Related Research

Our proposal aims to facilitate the development of neural models
leveraging background knowledge expressed in logical constraints.
This approach, explored both during inference [8, 28, 9] and train-
ing [11, 20, 33] of neural networks, has been encapsulated in li-
braries like DeepProbLog [19], PyLon [1], and Scallop [12]. Domi-
KnowS [7] provides a declarative interface for defining knowledge
and computational units, allowing seamless integration of knowledge
using various techniques. While DomiKnowsS represents a significant

2 To access the demo, use the following user: "Reviewer" and Password: "De-
moReviewer2024" at https://hlr-demo.egr.msu.edu/.
3 https://youtu.be/9q9PvH3dJKE



advancement, our proposal seeks to enhance the declarative interface
by enabling the direct use of task descriptions in natural language.

Moreover, existing endeavors in code generation [5, 30] deploy
large models in few-shot or zero-shot settings [36, 3] or fine-tune
them for specific tasks [22, 27]. These approaches rely on encounter-
ing similar data in pre-training or demand substantial data resources
for fine-tuning, which are inaccessible to us. Our work emphasizes
using natural language interfaces to generate code that supports the
development of neural models instead of raw code in popular pro-
gramming languages.

Recent research has investigated generating neural architecture
from natural language prompts by composing models during in-
ference [29], generating training data [35], or training straightfor-
ward architectures [31]. Differently, we facilitate mapping natural
language prompts to formal symbolic representations beneficial for
crafting complex declarative learning-based models.

Our proposal aligns with recent research on the trajectory of de-
riving formal representations from language models, where recent
research has delved into such translation to formalism suitable for
underlying engines for logical inference and constraint optimization
domains [23] and guided generation for consistent reasoning [24].
However, we propose an interactive pipeline for extracting repre-
sentations, facilitating the development of neural architectures intri-
cately connected to symbolic concepts. Our task includes an addi-
tional complexity, as the target formalism is not seen during LLMs’
pretraining.

Lastly, our work employs techniques for sampling LLMs’ out-
put, emphasizing that correct response can be obtained with a suffi-
cient number of samples [21]. Techniques like majority voting, post-
pruning, and filtering by test cases have enhanced accuracy in large-
scale sampling [4, 2, 6]. Due to the dynamic nature of tasks and neu-
ral models, defining test cases is impossible for our use case. Instead,
we employ an iterative feedback system that provides execution er-
rors to the language model to reflect on. In contrast to self-refinement
research [13], our work introduces an external symbolic parser for
the semantic evaluation of expected output structures, offering in-
sights for iterative error correction.

3 DomiKnowsS Interface

Our tool aims to translate natural language descriptions of structured
prediction tasks into corresponding representations within the Domi-
KnowS framework. DomiKnowS programs include three compo-
nents: knowledge declaration (task structure and constraints), model
declaration (computational units), and program execution (knowl-
edge integration, learning, and inference). This paper focuses on the
knowledge declaration stage, as it often requires input from domain
experts who may lack familiarity with neural architectures or pro-
gramming languages. Therefore, this step benefits significantly from
a natural language interface. The knowledge declaration stage seeks
to construct a concept graph that represents the structure of tasks and
incorporates domain-specific logical constraints. A snippet of code
in DomiKnowsS, illustrating the representation of the Natural Lan-
guage Inference (NLI) task graph structure and logical constraints, is
provided in Figure 1.

3.1 Graph Structure

The graph defines the input-output structure and dependencies of the
task, featuring nodes representing concepts and edges denoting re-
lationships. In NLP tasks, input concepts include sentences, para-

with Graph('NLI_Graph') as graph:
pair = Concept(name='pair')
premise = Concept(name="'premise')
hypothesis = Concept(name='hypothesis')
(arg_p, arg_h) = pair.has_a(premise, hypothesis)
# 3 classes in a multi-class setting
nli_lb = pair(
name="nli_class", values=[
"entailment", "neutral", "contradiction"])
sym = Concept(name="symmetric")
s_pl, s_p2 = sym.has_a(argl=pair, arg2=pair)
### Symmetric constraint
#i### Ent(X1, X2) => !CON(X2, X1)
ifL(andL(nli_1lb.entailment('x"'),
existsL(sym('s', path=('x"', sym.reversed)))),
andL(notL(nli_1b.contradiction(
path=('x', sym.reversed, s_p2)))))

Figure 1. A subset of the concept graph generated for the Natural
Language Inference (NLI) task.

graphs, phrases, words, and tokens, while vision tasks involve con-
cepts like images and bounding boxes. In structured prediction, task
labels are considered output concepts. Each decision concept must
be anchored in an input concept; for instance, the sentence_class is
connected to the sentence concept, and named entity tags are linked
to the phrase concept. DomiKnowsS uses is_a’ for such connections,
’contains’ for relationships between a concept and its same-type chil-
dren, and "has_a’ for many-to-many relationships.

3.2 Logical Constraints

DomiKnowS introduces a specialized Python-based language that
employs concepts, edges, variables, and logical operators to declare
dependencies in first-order logic between concepts, which is used to
define the tasks’ domain knowledge in terms of constraints. Signifi-
cantly, the syntax for specifying first-order logic constraints in Domi-
KnowS is not observed during the pre-training of large language
models, presenting a difficulty in generating outputs that adhere to
this format in a zero or few-shot setting.

4 Natural Language to Knowledge Declaration

Our interactive interface employs prompt templates from the
LangChain framework* and GPT-3.5-turbo’. At each stage, user in-
put fills in a predefined template that is consumed by the model to
generate the information needed for subsequent steps. We adjust the
conversation history to prevent excessive context accumulation, es-
pecially where we have an iterative process.

Figure 2 provides an overview of the pipeline. The model may con-
sume a series of underlying natural language instructions, in-context
demonstrations, and execution feedback, plus the user input and in-
formation from prior interactions at each step. The process begins
by gathering basic information, such as the task’s name, domain,
and dataset name (see step 1 in the figure). Subsequently, the model
formulates a clear task description, including the task’s input/output
and decision types. Users have the flexibility to modify this descrip-
tion. Next, the model compiles a list of concepts (nodes in the graph)
representing the task’s structure (the input/output concepts, decision

4 https://www.langchain.com/
5 https://openai.com/blog/chatgpt/
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Figure 3. The visualized graph based on the NLI task.

types, and more; See step 2). Users can modify items on this list,
which is the foundation for generating an initial concept graph (in
Python; See step 3).

The generated code might not be accurate/executable due to the
model’s lack of familiarity with DomiKnowS’ language. Therefore,
we implement a loop of symbolic processing of the code and detec-
tion of errors while providing the LLM with feedback for refinement.
At each step, the model receives errors from the code’s parse and ex-
ecution, which evaluates the graph structure and uses this feedback
to refine the code (Step 4). We also seek user feedback once confi-
dent in the code’s quality. As users need not be familiar with Domi-
KnowS’ notation, they provide feedback based on the visual repre-
sentation of the code’s structure, representing the nodes and edges in
the graph (Step 5). Figure 3 visualizes the graph for the NLI task.

Subsequently, users provide the task constraints in natural lan-
guage. The model aims to translate these expressions into Domi-
KnowS’ Python-based FOL language, which differs somewhat from
standard FOL syntax (see step 6). We employ techniques such as dy-
namic in-context learning, intermediary FOL mapping, and iterative
refinement to assist the model in this translation (see step 7).

Here, we briefly discuss some of the important techniques used in
the pipeline.

Sampling Strategy We draw multiple samples from the underlying
LLM at each step and select the most accurate response through user

feedback or automated metrics, such as error counts from the execu-
tion. Additionally, if some samples do not have any errors generated
by the symbolic processing engine, we prune out the remaining erro-
neous samples after a certain amount of iterations.

Dynamic In-Context Retrieval Our pipeline involves in-context
demonstrations for various tasks in the NLP and vision domains at
each step. To enhance model execution speed and minimize noise
from irrelevant examples, we selectively include a subset of in-
context demonstrations relevant to the target task. We achieve this
by creating a vector database of in-context demonstration representa-
tions using the OpenAl Embedding service and identifying the most
relevant ones for inference based on cosine similarity. This approach
reduces computational costs and noise in LLM inference.

Iterative Symbolic Refinement We propose an iterative refinement
process in response to LLMs’ inability to execute code. Leveraging
the representations of structure and constraints in DomiKnowS, we
develop syntactic and semantic evaluation parsers to provide feed-
back. This symbolic parser generates graph structure and constraints,
pinpointing semantic and syntactic errors. The parser’s feedback
serves as instructions for the LLM to refine its initial answer, ad-
dressing the challenge of limited prior exposure to DomiKnowsS syn-
tax and ensuring accurate responses.

FOL Mapping To enhance constraint generation precision, we uti-
lize an intermediary FOL mapping process. The model translates nat-
ural language descriptions into FOL statements and then converts
them into DomiKnowS FOL syntax. This approach leverages the
model’s pre-training exposure to FOL statements. We symbolically
extract logical predicates and arguments from the graph to improve
prediction by offering additional input. FOL mapping assists LLMs
in capturing semantics through FOL representations, enabling users
to validate constraints based on these statements, assuming perfect
alignment between the two representations.

5 Evaluation and Analysis

We evaluated our natural language interface given various tasks in
NLP, Vision, and Constraint Satisfaction Problems (CSP) based on
automatic (similarity-based) and human judgments.



5.1 Automatic Evaluation

We devise a set of metrics customized for each step of the process,
aligning with the expected output at every stage. This evaluation cov-
ers a benchmark of 14 tasks, spanning Entity Mention and Relation
Extraction, Hierarchical Classification, Sudoku, Procedural Reason-
ing, Causal Reasoning, Natural Language Inference, and more. At
each stage, we utilize the ground-truth input from the dataset for
evaluation. A distinct evaluation approach for end-to-end mode, in-
corporating human intervention, will be discussed in the next section.

5.1.1 Task, Concept, and Graph Generation

Table 1 reports the results of automatic metrics evaluated on the task
description, concepts, and initial and fixed graphs. The outcomes
demonstrate the success of our proposed tool in generating the in-
formation at each step. The large number of error-free tasks after re-
finement and the higher performance of the model using sampling in-
dicate the effectiveness of both of these techniques in enhancing the
model’s performance. Notably, generating the concept list shows a
higher error rate, especially in tasks like CIFAR-100 [17], where de-
cision space is large, and the model often falls short by adding ‘etc.’
to the label set instead of listing all classes. The limited differences
in predicted nodes and edges compared to the ground truth suggest
that human intervention can effectively address graph issues by in-
structing the model to add or remove small components. Although
dynamic retrieval can help reduce the cost and increase the speed of
the process, it slightly hurts the model’s performance at these phases.

5.1.2 Constraints Generation

To evaluate constraints, we examine the model’s ability to gener-
ate semantically and syntactically correct constraints concerning the
graph structure and Python syntax within DomiKnowS. The eval-
uation further details the performance using the intermediary FOL
statements and the dynamic retrieval for in-context demonstrations.

Table 2 shows the experiment results for constraint evaluation. Our
symbolic parser significantly contributes to resolving errors in the
feedback loop, demonstrating the effectiveness of generating well-
described errors for output refinement. Experiments indicate that a
small sampling factor (3 samples) enhances model accuracy, and
FOL mapping serves as a valuable intermediary layer, reducing the
need for iterative constraint adjustments. Manual evaluation reveals
that while most generated constraints (even in erroneous tasks) are
semantically accurate, issues arise in adapting to the DomiKnowS
language due to limited knowledge and resources. While dynamic
retrieval aids in direct constraint generation, it hinders performance
in the FOL setting. This can be attributed to the lack of exposure
to mappings from FOL statements into the DomiKnowS language,
which tends to encourage the model to employ FOL operations un-
supported in DomiKnowS.

5.2  Human Evaluation

The human evaluation assesses two key aspects of our demo. Firstly,
it measures the comparative ease and utility of our proposed demo
in contrast to the conventional method of navigating the documenta-
tion and manually crafting programs within the Python package of
the DomiKnowS library. Secondly, the evaluation provides insights
into the accuracy of each step in the interactive process, detailing
the quantity and nature of user interventions required for satisfac-
tory performance across diverse tasks. Additionally, we aim to assess

whether the proposed tool facilitates users unfamiliar with the Domi-
KnowS programming language in validating the model’s responses.

5.2.1 Interface V.S. Coding

We assess user experiences in crafting structured prediction tasks in
DomiKnowS with two volunteer groups (5 people per group). Each
group received a 20-minute introduction to structured prediction and
a high-level overview of DomiKnowsS. The first group used the demo
interface, while the second group, with access to DomiKnowS docu-
ments and examples, manually composed concept graphs and logical
constraints. Tasks included hierarchical image classification, senti-
ment analysis, and entity mention and relation extraction.

Groups’ Sub-tasks: Group 1: Describe the task and interact with the
interface. Group 2: Read the documentation and examples; Write the
code.

Average Time of Implementation: Group 1: 20 minutes, Group 2:
1 hour

Time Splits: Group 1: 60% user input - 40% model output. Group 2:
35% documents - 65% coding

Findings: Human effort using the interface is reduced 5 times. Opt-
ing for the local LLM version instead of the API can further accel-
erate final code generation. Notably, the second group often sought
additional guidance on task modeling, while the tools integrated into
the demo interface effectively guided the first group. Additionally,
we instructed the second group to revisit the task using the demo
interface, allocating them a 10-15 minute timeframe. The consensus
within this group was that the demo interface provided a significantly
superior and more user-friendly experience.

5.2.2 Interactive Setting

To evaluate the demo in an end-to-end interactive setting, we asked
two volunteers to implement a total of seven tasks while recording
their every interaction with the interface.

Duration: The average time for the process was 17 minutes. The
most time-consuming part was the constraint generation, taking more
time for both the user to write constraints and the model to generate
them (averaging 150 seconds for model responses).

Task Descriptions: In 6 out of 7 tasks, the user removed only ad-
ditional and unnecessary information. In one task, the user extended
the decision set by replacing the word ‘etc.” with actual labels.
Concept List: In 4 out of 7 tasks, one sample was correct, while
in the remaining tasks, the user had to remove or add less than two
concepts to the list.

Concept Graph: In 4 out of 7 tasks, the correct graph was generated
without user intervention. In 2 out of 7 tasks, one interaction was
needed. In 1 out of 7 tasks, the user interacted five times to remove
a wrongly included relationship between concepts where multiple
relationships existed. The visualization tool notably provided users
with all the necessary information to evaluate the graph.
Constraints: Most of the constraints were both semantically and
syntactically correct. In cases with erroneous results, the verification
process could capture the error but not resolve it correctly. Errors
were mainly due to using syntax close to FOL for operations not
directly supported in DomiKnowS, like equality between multiple
variables. Remarkably, in cases such as constraints in a sudoku table,
the model detected similar patterns and used for-loops to implement
multiple constraints with similar logical structures but variant logical
predicates.



. N Initial Graph Refined Graph
In-Context | # Samples | Task Description (BertScore) | Concept List Diff Error-Free DI Error-Free
Full 1 73.9% 20.8% 12/14 0.8N,33E 14/14
Full 3 79.3% 20.6% 13/14 0.76 N,2 E 14/14
Dynamic 1 73.9% 26.8% 10/14 2.IN,2.6 E 14/14
Dynamic 3 79.3% 26.8% 13/14 15N, 2.1E 14/14
Table 1. Summary of automatic evaluation results for generating task components (description, concept list, initial graph, and post-fix graph). In full

in-context, 4 demonstrations are used, while Dynamic has 1. n/N indicates successful graph parsing of n out of N tasks without structural issues. z N, y E
represents average x differences in nodes and y differences in edges compared to the ground truth. When using more than 1 sample, the result of the best
sample is reported, mimicking human intervention in selecting the optimal answer.

Setting | In-Context | # Samples | Error-Free Tasks | % Err Type in Resolved Err | % Err Type in Unresolved Err
Full 1 2D,61 53% P, 47% S 79% P, 21% S
Direct 3 4D,91 48%P, 52% S 66% P, 34% S
Dynamic 1 5D,51 70% P, 30% S 70% P, 30% S
3 6D,71 41% P, 59% S 64%P, 36%S
Full 1 8D,01 90% P*, 10% S 80% P, 20%S
FOL 3 13D,01 77%P, 23% S 82%P, 18%S
Dynamic 1 5D,21 65%P, 35% S 80% P,20% S
3 10D, 11 65%P, 35%S 75%P, 25% S

Table 2. Results for constraint generation and the ratio of error types in resolved/unresolved errors during iterative feedback. There are a total of 14 tasks,
with 4 demonstrations in full in-context and 1 in Dynamic. ‘¢ D, j I denotes ¢ tasks are correct without the need for feedback and j are fixed after the iterative
feedback. :% P, 7% S indicates that 1% of resolved/unresolved errors are Python errors, while 5% are errors caught and reported in a custom prompt with our

symbolic parser. In settings with multiple samples, a task is error-free if at least one sample has no errors.

6 Conclusion and Future Work

This demo introduced a novel tool for translating natural language
prompts into formal representations of structured prediction tasks
and the integration of domain knowledge in learning. Using large
language models, we utilize predefined prompt templates, in-context
learning, dynamic retrieval, mapping to intermediary representa-
tions, sampling, pruning, and iterative symbolic parsing and execu-
tion to refine model outputs. Our evaluation, incorporating automatic
measurements and human assessments, highlights the tool’s ease of
use, high accuracy, and the effectiveness of proposed techniques in
generating declarative code. Future directions include exploring ad-
vancements in retrieving neural models to establish connections be-
tween symbolic representations and neural units, facilitating end-to-
end neuro-symbolic model creation, composition, and training.

Limitations

Our demo is bound to the limitations of the tools it is built upon.
First, our demo can only generate task representations for tasks in the
space of structured prediction tasks as supported by the DomiKnowS
framework. As such, it might not be perfectly aligned with many gen-
erative Al paradigms. Second, our current interface requires access
to the OpenAl API and GPT-4/GPT-3.5. However, developing the
system utilizing Langchain would allow us to switch the underlying
LLM to open-source and local models easily.
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